
SonoCoin Protocol Documentation
Release 0.0.1

SonoCoin Foundation

Sep 13, 2018

Contents:

1 Scope 3
1.1 Introduction . 3
1.2 Standards . 4
1.3 Blockchain . 6
1.4 Coin . 12
1.5 P2P . 12
1.6 POS . 20
1.7 Reference Implementation . 21

2 Indices and tables 23

i

ii

SonoCoin Protocol Documentation, Release 0.0.1

SonoCoin - the first cryptocurrency to transact via encrypted audio files simplifies blockchain-based payments giving
anyone the power to transact utilizing common methods of delivery.

Contents: 1

SonoCoin Protocol Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

Scope

This documentation aims to provide enough information to enable an avid reader to build his own node implementation
conforming to the SonoCoin protocol. SonoCoin was inspired by many existing platforms and aims to combine the
best parts of all existing solutions.

1.1 Introduction

SonoCoin is a decentralized blockchain platform with a native crypto currency based on proof of stake (PoS). As such,
there exist a variety of appilcations surrounding the SonoCoin ecosystem.

This documentation focuses on the protocol specification that allows nodes to communicate with each other and agree
on the state of the blockchain in a decentralized manner.

1.1.1 SonoCoin Nodes

A SonoCoin node is any piece of software that behaves according to the present SonoCoin protocol specification.
Nodes form the basis of a SonoCoin network and perform several important functions:

• Peer-to-peer communication over TCP / UDP

• Blockchain storage

• Consensus establishment

• Gateway functionality

An open source Reference Implementation of a SonoCoin node was implemented by the SonoCoin foundation.

1.1.2 SonoCoin Networks

A SonoCoin network is formed by a large number of nodes interacting with each other according to the protocol
specification.

3

SonoCoin Protocol Documentation, Release 0.0.1

Currently, two public networks exists:

• Main network

• Test network

1.1.3 SonoCoin Clients

A SonoCoin client is any piece of software that interacts with a SonoCoin network. Clients use the gateway functional-
ity of nodes to publish transactions or query the blockchain state. Several different open source clients implementations
have been developed by the SonoCoin foundation:

• Android Client

• iOS Client

• Desktop Client

Note: Github links will be added soon.

1.2 Standards

1.2.1 Cryptography

Hashes

All hashes use the SHA256 algorithm as defined in FIPS 180-4. The reference implementation uses the sha256
package from golang’s standard library.

Example

The SHA256 hash of the message “Hello World!” results in:

0x7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd200126d9069

Signatures

All signatures use EdDSA with Curve25519. The reference implementation uses the go-libsodium library.

Example

Given the following keypair:

0x75a8c71c874456844313e4e0766d9aee0b225a95497b576f0c914a19ce1c5f96 // private
0xbe725676384aa8b7ce1faf7a0c20b7cb3e862c139bc0a9479a8789346e4af234 // public

Signing the msg “Hello World!” with the given private key would result in the following signature.

0xa4a0e361cfb0a28c8f577fe6ba440d8e4a441d42a1d93b695cdd470d14ced778adb70a8e1762f42366235610cebd98e58f791fae11faa7342077c330fe5bc707

4 Chapter 1. Scope

https://tools.ietf.org/html/rfc8032
https://en.wikipedia.org/wiki/Curve25519

SonoCoin Protocol Documentation, Release 0.0.1

1.2.2 Encoding

Some networking data is encoded using RLP to allow for more efficient usage of bandwidth.

Recursive Length Prefix (RLP)

Recursive Length Prefix (RLP) is a serialization format originally created by the Ethereum developers. Unlike other
binary serialization formats, RLP doesn’t differentiate between different data types but only encodes data structure.

Definition

• Single bytes between 0x00 and 0x7f are their own RLP encoding.

• Byte arrays with a length of 0 to 55 bytes are encoded using a special prefix of 0x80 plus the length of the array.

Note: Special case: Single bytes between 0x80 and 0xff are encoded as a byte array of length 1 and are thus prefixed
with 0x81.

• Byte arrays larger than 55 bytes are encoded using two prefixes. The first prefix pf1 defines how many bytes are
going to be used to encode the length of the array. The second prefix pf2 defines the length of the array. pf1 is
calculated by adding the length of pf2 to 0xb7. pf2 is simply the length of the byte array and might be several
bytes long.

• Lists of length 0 to 55 are prefixed with 0xc0 added to the length of the list in bytes. List items can be any other
RLP encoded data (lists, byte arrays, bytes).

• List of length greater than 55 are similarly encoded using two prefixes. The first prefix pf1 defines how many
bytes are going to be used to encode the length of the list. The second prefix pf2 defines the length of the list.
pf1 is calculated by adding the length of pf2 to 0xf7. pf2 is simply the length of the list in bytes and might be
several bytes long.

Note: The first byte of the RLP encoding thus implies the data structure as follows:

Byte range Data structure
[0x00, 0x7f] Single byte
[0x80, 0xb7] Byte array of size 0-55
[0xb8, 0xbf] Byte array of size > 55
[0xc0, 0xf7] List of size 0-55
[0xf8, 0xff] List of size > 55

1.2. Standards 5

https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-RLP

SonoCoin Protocol Documentation, Release 0.0.1

Examples

Data RLP Encoding
0x05 [0x05]
“H” [0x68]
“Hello” [0x85, 0x68, 0x65, 0x6c, 0x6c, 0x6f]
“World” [0x85, 0x77 0x6f 0x72 0x6c 0x64]
[“Hello”,”World”] [0xcc, 0x85, 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x85, 0x77 0x6f 0x72 0x6c 0x64]
[[], [[]], [[], [[]]]] [0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0]

Note: Since RLP doesn’t know any data types, examples encode strings using ASCII for simplicity.

1.2.3 Decimals

The value of SonoCoin is represented by a 64 bit unsigned integer (uint64). In order to allow fractions of a SonoCoin
to be transfered, a constant is defined that determines how many decimal places are included in the value. SonoCoin
uses 8 decimal places, meaning that the amount of SonoCoins is the uint64 value divided by 108.

Examples

uint64 Value SonoCoin
1 0.00000001
10 0.0000001
100 0.000001
1000 0.00001
10000 0.0001
100000 0.001
1000000 0.01
10000000 0.1
100000000 1
1000000000 10
10000000000 100
100000000000 1000
1000000000000 10000
10000000000000 100000
100000000000000 1000000
1000000000000000 10000000
10000000000000000 100000000

1.3 Blockchain

The following section covers data structures used in SonoCoin’s blockchain.

Note: Sizes are measured in bytes.

6 Chapter 1. Scope

SonoCoin Protocol Documentation, Release 0.0.1

1.3.1 Transactions

Transactions represent a blockchain state transition function. They are the only means to change the state of the
blockchain and are consequently used to split coins, combine coins and reissue coins. Transactions in SonoCoin work
similar to Bitcoin’s. Each transaction contains a list of inputs and outputs. Transaction inputs reference and claim
previous transaction outputs. Transaction outputs set up conditions for claiming ownership of the value held in them.
The state transition specified by the transaction happens when the transaction is validated and added to a block.

The structure of a transaction can be seen in the following table.

Table 1: Transaction Data Structure
Size Name Type Comment
32 Hash [32]byte Hash of the transaction
4 Version uint32 For forward compatibility (Current Version = 1)
4 LockTime uint32 Time after which the transaction can be added to the blockchain
var. Inputs []TransactionInput Claimed transaction inputs
var. Outputs []TransactionOutput Spendable transaction outputs (UTXO)

The following illustration shows an example transaction that takes 4 inputs and generates two outputs (excluding the
commission output):

Fig. 1: An example of a SonoCoin transaction

Transaction Input

Transaction inputs reference a spendable transaction output (UTXO) captured in the transaction input outpoint data
structure. Furthermore a script needs to be added with a valid signature allowing the party creating the transaction to
claim the referenced UTXO.

Table 2: TransactionInput Data Structure
Size Name Type Comment
44 PreviousOut-

put
TransactionInputOut-
point

Reference to UTXO

4 Sequence uint32 The index of the specific input in the transaction
var. Script []byte Signature to verify public key ownership of the referenced

UTXO

Transaction Input Outpoint

Transaction input outpoints are references to previous transactions outputs. The reference is captured with a transaction
hash, index of the to be claimed UTXO and the value contained in the UTXO.

Table 3: TransactionInputOutpoint Data Structure
Size Name Type Comment
32 Hash [32]byte The hash of the referenced transaction
4 Index uint32 The index of the specific output in the transaction
8 Value uint64 UTXO value

1.3. Blockchain 7

SonoCoin Protocol Documentation, Release 0.0.1

Transaction Output

Table 4: TransactionOutput Data Structure
Size Name Type Comment
4 Index uint32 Ordering parameter
8 Value uint64 Transaction output value
var. Script []byte Script defining conditions to claim this output
32 NodeID [32]byte Public key of node that wants to participate in PoS

Note: the script field usually contains the public key of the new UTXO owner.

Commission Transaction

Every transaction in SonoCoin is subject to a commission that is used as an incentivization mechanism for the POS
consensus algorithm. The first output of every transaction is defined to be a commission output spendable by whoever
mines the block containing the transaction. A valid commission output thus has an index of 0 and an empty script
enabling the miner to claim the output.

When mining a block, a miner creates and adds an additional transaction to the block called the commission transaction
that claims and combines all the commission outputs into a single utxo. The commission transaction is always added
to the beginning of the transaction list.

Fig. 2: Illustration of how commission outputs are claimed by a miner in the commission transaction. c represents the
commission amount (0.01 SNC)

Hash Calculation

Transaction hashes are calculated using sha256(sha256(flatTx)), where flatTx stands for the flattened Transaction data
structure (Excluding the Hash field). The flattened array of a transaction with one input and one output (excluding the
commission output) is of the following form:

Table 5: Flattened data structure for a Transaction with one input and
one output (excluding commission output)

Size Name Type Endianness Data Origin
4 Version uint32 Little Transaction
4 LockTime uint32 Little
32 Hash [32]byte n/a Transaction Input Outpoint
4 Index uint32 Little
8 Value uint64 Little
4 Sequence uint32 Little Transaction Input
var. Script []byte n/a
4 Index uint32 Little Transaction Output (Commission)
8 Value uint64 Little
4 Index uint32 Little Transaction Output
8 Value uint64 Little
var. Script []byte n/a

8 Chapter 1. Scope

SonoCoin Protocol Documentation, Release 0.0.1

Validation

A transaction is considered valid if it satisfies the following conditions:

• The transaction contains at least one valid input and two outputs.

• The first output of the transaction has an empty Script and a value of 0.01 SNC (Commission Output).

• The input scripts are valid claims of the referenced transaction outputs.

• The sum of the input values is equal to the sum of output values.

Special cases

• The commission transaction only has one output that combines all the comission outputs of a block.

• The genesis transaction does not have any inputs.

1.3.2 Blocks

There are two types of blocks in SonoCoin:

• Normal blocks (Containing transactions)

• Epoch blocks

Both blocks share the same block header but use a different block body.

Block

A block is a signed aggregation of transactions, that is linked to the previous block by a hash.

Fig. 3: Illustration of block ordering by hash linkage.

Table 6: Normal Block Data Structure
Size Name Type Comment
var. Header BlockHeader block header
var. Transactions []Transaction Block transactions, in format of “tx” command

Epoch Block

Epoch blocks are part of SonoCoin’s PoS consensus algorithm. They hold a list of public keys called the advice list,
that is used to determine the miners for the following epoch in sequential order. Epoch blocks themselves are not
mined, but generated by each node independently. For further details please refer to POS.

Table 7: Epoch Block Data Structure
Size Name Type Comment
var. Header Block-

Header
block header

var. Ad-
vices

[][32]byte List of public keys determining the miners of the following epoch in sequential
order

1.3. Blockchain 9

SonoCoin Protocol Documentation, Release 0.0.1

Block Header

Table 8: Block Header Data Structure
Size Name Type Comment
4 Type uint32 Block type (0 = Epoch block, 1 = Normal block)
32 Hash [32]byte Block Hash
4 Height uint32 Height
8 Size uint64 Size
4 Version uint32 For forward compatibility (Current Version = 1)
32 PrevBlock [32]byte The hash value of the previous block this particular block references
32 MerkleRoot [32]byte The root hash of the merkle tree of all transactions / advice nodes
4 Timestamp uint32 A timestamp recording when this block was created (Will overflow in 2106)
4 Bits uint32 Not Used
4 Nonce uint32 Not used
32 Seed [32]byte Legacy part of PoS algorithm
4 TxnCount uint32 Number of transactions contained in the block
4 AdviceCount uint32 Number of advice nodes
var. Script []byte Node signature

Hash Calculation

Merkle Root Calculation

Note: Will be specified soon.

Block Hash Calculation

Note: Will be specified soon.

1.3.3 Genesis Blocks and Transaction

SonoCoin’s gensesis blocks are hard coded blocks that are used to kickstart the blockchain. In SonoCoin two such
blocks need to be defined. The first block creates the total supply of 100,000,000 SNC and assigns them to a key pair.
The second block is needed to kickstart the PoS algorithm with a list of advisors.

SonoCoins Genesis block is defined as follows:

10 Chapter 1. Scope

SonoCoin Protocol Documentation, Release 0.0.1

Table 9: Genesis Block Header
Parameter Value
Type 1
Hash 114478c6875b7bfe44c9af34c2cf8e93043d59e76ee7180218c65bdc84c0dbcb
Height 1
Size 592
Version 1
PrevBlock 0
MerkleRoot 641693ef03a89b2fd0022ef794294f10be8d38f1c69dcae4ea813d6d0170d85e
Timestamp 1511859600
Bits 0
Nonce 0
Seed (Empty)
TxnCount 1
AdviceCount 0
Script []

The genesis block consists of a single transaction with no input but one output of 100‘000‘000 SonoCoins to the
following Key Pair:

Table 10: Genesis Key Pair
Parameter Value
Private Key 4a9c464e848424c9197e09b85ed47a51d2c07cc43a6b923c9a805686a59b311f
Public Key b2d29213085e152ec752ff87f1a61cba9523997bfbc9021e7d08a401e31659af

Genesis Epoch

After the genesis block is created a gensis epoch is defined by adding an additional Epoch block. The genesis epoch
block header is specified in the following table:

Table 11: Genesis Epoch Block Header
Parameter Value
Type 0
Hash cda2ebb07d5224b572723af96cf937e8f2c317bd2e2a585d4e3c7a7d93e2a6ef
Height 2
Size 49611
Version 1
PrevBlock 114478c6875b7bfe44c9af34c2cf8e93043d59e76ee7180218c65bdc84c0dbcb
MerkleRoot 01a4cbcf526be3f153b1dea54cdf3a8f5752a4e35c2c380e9a94f17efc08a4fa
Timestamp 1511952548
Bits 0
Nonce 0
Seed (empty)
TxnCount 0
AdviceCount 600
Script []

The genesis Epoch block body contains a list of 600 identical advisors. The public key of the advisor can be found in
the following list:

1.3. Blockchain 11

SonoCoin Protocol Documentation, Release 0.0.1

[
64b8f1da790f5f1fe2e8dce38c3b9e99752b6fe8325693f4909e4203eadcdc92, // 1.
64b8f1da790f5f1fe2e8dce38c3b9e99752b6fe8325693f4909e4203eadcdc92, // 2.
...
64b8f1da790f5f1fe2e8dce38c3b9e99752b6fe8325693f4909e4203eadcdc92 // 600.

]

1.4 Coin

In SonoCoin value is often transferred by sharing a special data structure with a recipient. This data structure is aptly
called a coin. A coin is made up of the following elements:

Size Name Type Comment
64 Key [64]byte Private key for a utxo
32 TxHash [32]byte hash of the transaction
4 Index uint32 Index of the utxo

1.4.1 Coin Reissuance

When a coin is transmitted from one user to another, the private key is shared between the users which causes a race
condition. The recipient has to reissue their coin to make the transfer final. This is done by creating a new key pair
and issuing a transaction that spends the UTXO associated with the private key to the generated public key.

1.4.2 Coin Transfer

Coins can be transmitted between SonoCoin clients by a variety of methods (Sound, Light, QR-Code). The following
illustration shows how SonoCoin’s mobile clients create the sound file.

Fig. 4: A simplified view of the SonoCoin sound generation algorithm.

1.5 P2P

This section describes how peers are discovered in the SonoCoin network and how information is shared between
nodes. SonoCoin’s P2P network layer is based on Ethereum’s well established RLPx protocol and can be divided into
the following three parts:

• Discovery Protocol (UDP)

• Base Protocol (TCP)

• SonoCoin Protocol (Base Protocol)

Any number of protocols can be built on top of the base protocol and can be used side by side with the SonoCoin
Protocol.

12 Chapter 1. Scope

https://github.com/ethereum/devp2p/blob/master/rlpx.md

SonoCoin Protocol Documentation, Release 0.0.1

1.5.1 Discovery Protocol

SonoCoin uses a variant of the Kademlia distributed hash table (DHT) to form a structured p2p overlay network. This
UDP based DHT represents the base layer of the SonoCoin network, allowing for a highly scalable (𝑂(log 𝑛) for node
lookup and space complexity) and general decentralized network infrastructure.

The following table summarizes the parametrization of Kademlia used in SonoCoin’s reference implementation:

Parameter Name Value
hash bits 256
k (bucket size) 16
𝛼 (Concurrency Factor) 3

For node distance calculations using Kademlia’s XOR metric the sha256 hash of the nodeID is used.

Packet header

All packets are prefixed with a header of the following structure:

Table 12: Discovery Packet Header
Size Name Type comment
32 PublicKey [32]byte The node’s public key
64 signature [64]byte sig(packet-type || packet-data)
1 packetType uint packet identifier

Note: The || operator stands for concatenation

Data Structures

The following data structure will be reused in the packet definitions:

Table 13: rpcEndpoint data structure
Size Name Type Comment
4 / 16 IPAddress []byte Little endian encoded IPV4 / IPV6 address
2 UDP uint16 UDP port number
2 TCP uint16 TCP port number

Packet Types

SonoCoin’s discovery protocol defines the following 4 RPC packet types. Packet size is limited to 1280 bytes. Larger
packets are discarded.

All packet contents are serialized using Recursive Length Prefix (RLP) encoding.

1.5. P2P 13

https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf

SonoCoin Protocol Documentation, Release 0.0.1

Ping Packet (packet-type = 0x01)

Size Name Type comment
4 Version uint32 For Forward compatibility (Current Version = 1)
8 / 20 From rpcEndpoint
8 / 20 To rpcEndpoint
8 Expiration uint64 Unix timestamp after which packet is considered expired

Pong Packet (packet-type = 0x02)

Size Name Type comment
8 / 20 To rpcEnpoint
32 ping-hash [32]byte hash of corresponding ping packet
8 Expiration uint64 Unix timestamp after which packet is considered expired

FindNode Packet (packet-type = 0x03)

Size Name Type comment
32 Target [32]byte The identifier of the node
8 Expiration uint64 Unix timestamp after which packet is considered expired

Neighbors Packet (packet-type = 0x04)

Size Name Type comment
var. Nodes []rpcEndpoint
8 Expiration uint64 Unix timestamp after which packet is considered expired

Neighbors packets are split up into multiple packets to stay below the 1280 byte limit.

1.5.2 Base Protocol

The TCP-based base protocol is used to authenticate nodes and upgrade to a higher layer protocol (eg. SonoCoin
Protocol).

Message structure

All messages are structured as follows:

14 Chapter 1. Scope

SonoCoin Protocol Documentation, Release 0.0.1

Size Name Type Comment
3 StartSymbol [3]byte [0x73, 0x63, 0x6d] (“scm”)
4 Magic uint32 1 = MainNet, 2 = TestNet
8 Command uint64 command
8 Length uint64 Length of payload in number of bytes
4 Checksum uint32 First 4 bytes of sha256(sha256(payload))
16 UUID [16]byte Unique Packet Identifier
var. Payload []byte Payload Data

Available Commands

Command Name Command ID
cmdEncHandshake 0x00
cmdHandshake 0x01
cmdDisc 0x02
cmdPing 0x03
cmdPong 0x04

Handshakes

After a peer is discovered by the discovery protocol, two handshakes are performed to authenticate peers and commu-
nicate protocol capabilities. The described process is illustrated in the following sequence diagram:

Fig. 5: The base protocol handshaking process.

Data Structures

The following data structure will be reused in the packet definitions:

Table 14: Cap data structure
Size Name Type Comment
var. Name string Protocol name (“SNC” for SonoCoin Protocol)
4 Version uint32 For forward Compatibility (current version = 1)

Commands in Detail

cmdEncHandshake

The Encryption Handshake (0x00) authenticates the nodes and establishes a shared secret between them.

Warning: Shared secret isn’t used for encrypted communication yet.

The payload is different for the initiating peer and the target peer.

1.5. P2P 15

SonoCoin Protocol Documentation, Release 0.0.1

Request Payload

The initiator generates a random key pair and a random nonce and signs the nonce with the generated private key.

Size Name Type comment
64 Signature [64]byte Signed Nonce
32 InitiatorPubKey [32]byte Randomly generated public key
32 Nonce [32]byte Randomly generated nonce
4 Version uint32 For forward compatibility (Current Version = 1)

Response Payload

Size Name Type comment
32 random_pub_key [32]byte Randomly generated public key
32 Nonce [32]byte Randomly generated nonce
4 Version uint32 For forward compatibility (Current Version = 1)

cmdHandshake

The protocol handshake (0x01) determines the capability of the nodes and is the same for the initiator and the target.

Size Name Type comment
32 NodeID [32]byte
8 Version uint64
var. Name string
var. Caps []Cap
8 ListenPort uint64

cmdDisc

cmdDisc is used when disconnecting from a peer. It lets the peer know why the TCP connection will be dropped.

Size Name Type comment
4 Reason uint32 Reason for disconnecting. Valid reasons Listed in the following table

16 Chapter 1. Scope

SonoCoin Protocol Documentation, Release 0.0.1

Reason List

Name Code Description
DiscRequested 0x00
DiscNetworkError 0x01
DiscProtocolError 0x02
DiscUselessPeer 0x03
DiscTooManyPeers 0x04
DiscAlreadyConnected 0x05
DiscIncompatibleVersion 0x06
DiscInvalidIdentity 0x07
DiscQuitting 0x08
DiscUnexpectedIdentity 0x09
DiscSelf 0x0a
DiscReadTimeout 0x0b
DiscSubprotocolError 0x10

Warning: TODO: define which disconnect reason is used when.

cmdPing

No payload.

cmdPong

Response to ping. No payload.

1.5.3 SonoCoin Protocol V1

The SonoCoin Protocol defines how blockchain related information is exchanged. Nodes that implement Version 1 of
the SonoCoin protocol communicate this, by adding [“SNC”,1] to their capability list in the base protocol handshake.

1.5. P2P 17

SonoCoin Protocol Documentation, Release 0.0.1

Available Commands

Command Name Command ID
cmdStatus 0x10
cmdPing 0x11
cmdPong 0x12
cmdMsg 0x13
cmdTx 0x14
cmdNewBlockHashes 0x15
cmdGetBlockHeaders 0x16
cmdBlockHeaders 0x17
cmdGetBlockBodies 0x18
cmdBlockBodies 0x19
cmdNewBlock 0x1a
cmdGetNodeData 0x1d
cmdGetReceipts 0x1f

Handshake

The SonoCoin Protocol Handshake involves both peers sending a cmdStatus (0x00) Message that communicates the
current state of each peer’s blockchain. The process is illustrated in the following sequence diagram:

Fig. 6: The SonoCoin protocol handshake.

Peers that haven’t partaken in a handshake but send commands from the SonoCoin Protocol should be dropped (cmd-
Disc 0x02).

Commands in Detail

cmdStatus

Handshake for the SonoCoin Protocol. Informs peer of blockchain state.

Size Name Type Comment
4 ProtocolVersion uint32 For forward compatibility (Current version = 1)
8 NetworkID uint64 Mainnet = 1, Testnet = 2
32 CurrentBlock [32]byte Hash of last known block in local blockchain
32 GenesisBlock [32]byte Hash of genesis block in local blockchain

cmdPing

No Payload.

cmdPong

Response to cmdPing. No Payload.

18 Chapter 1. Scope

SonoCoin Protocol Documentation, Release 0.0.1

cmdMsg

Sends a plain text message.

Size Name Type Comment
var. Name string

cmdTx

Notifies peer of uncofirmed transactions.

Size Name Type Comment
var. Txs []Transaction

cmdNewBlockHashes

Announces the availability of a number of blocks through a hash notification.

Size Name Type Comment
var. NewBlockHashes []newBlockHashesData

The newBlockHashesData type is defined as follows:

Size Name Type Comment
32 Hash [32]byte
4 Height uint32

cmdGetBlockHeaders

Requests block headers starting at hash or height.

Size Name Type Comment
32 / 4 Origin [32]byte / uint32 Block hash or block height
4 Amount uint32 Amount of blocks
4 Skip uint32 Amount of block to skip after origin
1 Reverse bool Block header order (1 = towards genesis, 0 = towards leaf)

Note: currently in the json version “reverse”: true, “reverse”: false instead of 1, 0

cmdBlockHeaders

Reply to cmdGetBlockHeaders

Size Name Type Comment
var. blockHeaders []BlockHeader

1.5. P2P 19

SonoCoin Protocol Documentation, Release 0.0.1

cmdGetBlockBodies

Requests block bodies specified by a list of hashes.

Size Name Type Comment
var. hashes [][32]byte Block hashes

cmdBlockBodies

Reply to cmdGetBlockBodies.

Size Name Type Comment
var. blocks []Block

cmdNewBlock

cmdNewBlock propagates a newly discovered block to a remote peer.

Size Name Type Comment
var. block Block

cmdGetNodeData

Warning: not implemented!

cmdGetReceipts

Warning: not implemented!

1.5.4 Node Bootstrapping

A new node wanting to join the network needs at least one seed node to connect to. It is recommended to optain seed
nodes in one of the following ways:

• Receiving a list of seed nodes from a trusted source and connecting to them directly.

• Calling the SonoCoin bootstrap API (https://api.sono.money/v1/nodes).

1.6 POS

Coming Soon. . .

20 Chapter 1. Scope

https://api.sono.money/v1/nodes

SonoCoin Protocol Documentation, Release 0.0.1

1.7 Reference Implementation

The reference implementation developed by the SonoCoin Foundation is published on github and is written in golang.

1.7. Reference Implementation 21

SonoCoin Protocol Documentation, Release 0.0.1

22 Chapter 1. Scope

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

23

	Scope
	Introduction
	Standards
	Blockchain
	Coin
	P2P
	POS
	Reference Implementation

	Indices and tables

